***10**

DNA 4142T

DYNAMICAL SOLUTION OF THE SGEMP ELECTRON BOUNDARY LAYER FOR LINEARLY RISING AND CONSTANT X-RAY TIME HISTORIES

Mission Research Corporation 735 State Street Santa Barbara, California 93101

December 1976

Topical Report for Period October 1976—December 1976

CONTRACT No. DNA 001-77-C-0009

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B323077464 R99QAXEE50210 H2590D.

Prepared for

Director DEFENSE NUCLEAR AGENCY Washington, D. C. 20305

(18) DNA, SBIE (9) 4142T, AD-E300 082

SECU RITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACC	ESSION NO. 3. RECIPIENT'S CATALOG NUMBER
DNA 4142T✓	
111 LE (and Sublitie)	THE THE OF REPOSED PRINCE COVERED
DYNAMICAL SOLUTION OF THE SGEMP ELECTRON BOUNDARY LAYER FOR LINEARLY RISING AND CONSTANT X-RAY TIME HISTORIES.	Topical Report.
BOUNDARY LAYER FOR LINEARLY RISING AND	Oct Dec Dec 276
CONSTANT X-RAY TIME HISTORIES.	ONO. REPORT HOUSE
	MRC-R-300
7. AUTHOR(s)	8. CONTRACT OF GRANT NUMBER(s)
DIN 1 /Common /	(15 DNA 001-77-C-0009)
N. J./Carron /	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Mission Research Corporation	10. PROCEAM ELEMENT, PROJECT, TASK
735 State Street	Subtast R990AXEE502-10
Santa Barbara, California 93101	ONESO
11. CONTROLLING OFFICE NAME AND ADDRESS	A secondary
Director	Dec 76
Defense Nuclear Agency√	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Washington, D.C. 20305	56 (72) Jap,
14. MONITORING AGENCY NAME & ADDRESS(II different from Controll	UNCLASSIFIED
	UNCEASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if	different from Report)
18. SUPPLEMENTARY NOTES	
This work sponsored by the Defense Nuclei	ar Agency under RDT&E RMSS
Code B323077464 R990AXEE50210 H2590D.	
19. KEY WORDS (Continue on reverse side if necessary and identify by b	lock number)
SGEMP Boundary Layer	
Electron Boundary Layer	
Photoelectron Emission	
X-ray Photoemission	
20% ABSTRACT (Continue on reverse side if necessary and identify by bi	ock number)
The time dependent solution is presented	
one dimensional electron boundary layer fo	
trons out of a material surface. The X-ra	av flux is taken to be either lin-
	ay trant to builten to be a trainer time
early rising in time or constant in time.	Two electron energy spectra are
considered—exponential and linear-times-	Two electron energy spectra are exponential. The electrons are
	Two electron energy spectra are exponential. The electrons are
considered—exponential and linear-times-cassumed to have a cosp emission distribut	Two electron energy spectra are exponential. The electrons are ion.
considered—exponential and linear-times—assumed to have a cosp emission distribut The electric field, potential, charge dens	Two electron energy spectra are exponential. The electrons are ion.
considered—exponential and linear-times-cassumed to have a cospemission distribut	Two electron energy spectra are exponential. The electrons are ion.

406 548 Yu

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

. ABSTRACT (Continued)

as functions of distance from the surface and time. The layer's dipole moment per unit area and its first and second time derivatives are given as a function of time.

The current density may be useful as a prescribed current for Maxwell solving codes. The dipole moment and its derivatives may be useful for estimating quasi-static and radiated dipole fields.

R

日子 日本日本日本日本

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

	PAGE
SECTION 1 - INTRODUCTION	3
SECTION 2 - COMPUTATION METHOD	5
SECTION 3 - LINEARLY RISING PULSE, EXPONENTIAL SPECTRUM	9
SECTION 4 - LINEARLY RISING PULSE, LINEAR-TIMES-EXPONENTIAL ENERGY SPECTRUM	20
SECTION 5 - CONSTANT PULSE, EXPONENTIAL SPECTRUM	30
SECTION 6 - CONSTANT PULSE, LINEAR-TIMES-EXPONENTIAL ENERGY SPECTRUM	41

	Name and Address of the Owner, where the Person of the Owner, where the Person of the Owner, where the Person of the Owner, where the Owner, which is the
ACCESSION for	/
NTIS	Wille Section W
DDC	Buff Section [7]
UNANNOUNCE	D □
JUSTIFICATION	
300111.0	
4	
BY	ARREST ARREST
DISTRIBUTION	VAYALABILITY CODES
Dist. AVA	IL and or SPECIAL
T	
	1
141	i i
1///	
1 1	

SECTION 1 INTRODUCTION

This report presents scaled numerical solutions for the one dimensional time-dependent SGEMP electron emission boundary layer problem in the two cases in which the incident X-ray flux is either linearly rising in time (a linear ramp) or is constant in time starting at t=0 (a step function). Two electron energy spectra are considered in each case, an exponential spectrum, and a linear-times-exponential spectrum. The electrons are assumed to be emitted with a $\cos\theta$ angular distribution. The scaled solutions given here provide the solutions to real problems with these energy spectra for arbitrary X-ray flux rise rates (for the linear ramp) or arbitrary fluxes (for the step function).

Most X-ray pulses start off rising linearly in time. In many cases, especially at high fluences or long rise times, much of the interesting boundary layer dynamics is taking place while the pulse is still linearly rising. Since a single solution suffices for all rise rates during this portion of the pulse, it is worthwhile to present this solution.

In addition, if the pulse rise time is very short compared to an electron turnaround time and compared to the subsequent time over which the remainder of the pulse varies significantly, then the boundary lover will behave approximately as if the Y-ray pulse were a step function. We also present the solution for this case.

The scaled equitions controlling the boundary layer were presented in Reference 1. There it was shown that if the Array pulse rises in time

Precedent Page BLAN

Longmire, C. L., and N. J. Carron, Scaling of the Time-Dependent SGEMP Boundary Layer, Mission Research Corporation, MRC-R-262, DNA 3975T, April 1976 (U).

like a power of time

$$F = R_{p} t^{p}$$
 (1)

where

子子と皆いれたいであったのとに好的

$$0 \le p < \infty$$
 , (2)

F is the incident flux (cal/cm²/sec), and R_p a constant, then the solution scales completely. For a given electron energy spectrum and given p, a single solution suffices for all R_p. The solutions given here correspond to p = 1 (R₁ is the flux rise rate) and P=0 (R₀ is the constant flux).

The solution is a one-dimensional one and should be meaningful out to distances small compared to the lateral dimensions of the target.

We give plots of electric field, potential, number density, and current density as a function of position and time. These are presented both as a function of x (distance from the target surface) for various times, and as a function of time for various x. In addition the dipole moment per unit area of the layer, and its first and second time derivatives are given as a function of time. The spatial integral of the current density is the same as the time derivative of the dipole moment.

The current densities given here may be useful as prescribed currents in Maxwell solving codes. The second time derivative of the dipole moment may be useful for estimating dipole radiation. The dipole moment may be useful for estimating distant quasi-static dipole fields.

SECTION 2 COMPUTATION METHOD

The numerical solutions were obtained with the one dimensional particle moving code SCALID. 2 Time and length scales are determined by the naturally occurring electron plasma properties. Times are measured as multiples of an effective plasma period $T_{\rm p}$ given by

$$T_{p} = \sqrt{\frac{m}{4\pi e^{2}N_{1}}}$$
 (3)

where m(e) is the electron mass (charge) and N_1 is an average surface number density, and lengths are measured as multiples of an effective plasma Debye length

$$\lambda = \overline{V} T_{p}$$
 (4)

where \overline{v} is the average normal velocity of the emitted electrons. These times and lengths are scaled out before beginning computation, so computed times and lengths are on the order of unity. Similarly the dependent dynamical variables have a natural magnitude which is factored out.

If the pulse is linearly rising, N_1 in Equation (3) is itself time dependent, so that Equation (3) as it stands does not define a time unit. In the general case, Reference 1 shows that a plasma period can be taken to be

Carron, N. J., Description of the Code SCALID for Calculating the One-Dimensional SGEMP Boundary Layer, Mission Research Corporation, MRC-R-267, May 1976 (U).

$$T_{p} = \left[\frac{m \, \overline{v}}{4\pi e^{2} y \, R_{p}}\right]^{\frac{1}{2+p}} \tag{5}$$

where Y is the material yield (elec/cal).

We assume the emitted electrons have a $\cos\theta$ angular distribution, where θ is the polar angle measured from the normal. The shapes of the two energy spectra we consider are shown in Figure 1. If the electron energy spectrum is exponential

$$\frac{dn}{dE} \sim \frac{1}{E} e^{-E/E}$$
 (elec/keV) (6)

where E is the electron energy and \overline{E} is the exponentiation energy, then the average normal velocity is

$$\overline{V} = \sqrt{\frac{2\pi E}{9m}} \qquad . \tag{7}$$

If the spectrum is linear-times-exponential

$$\frac{dn}{dE} \sim \frac{E}{\overline{E}^2} e^{-E/\overline{E}}$$
 - (elec/keV) , (8)

then

$$\overline{v} = \sqrt{\frac{\pi E}{2 m}} \tag{9}$$

In the code we have chosen a very small time step, $\leq 0.02~T_{\rm p}$. At all interesting times there were several thousand particles in the first few Debye lengths. The particles were given a finite length of 0.2 Debye length for the purpose of computing the charge density and current density.

Figure 1. Exponential, and linear-times-exponential energy spectra.

These quantities were further averaged over three spatial cells with a simple weighting scheme. The cell size was ~ 0.1 Debye length, and there were always several hundred particles in each cell.

The current density J(x,t) was computed as the sum of particle weights times their velocities, rather than as $\partial E/\partial t$ where E is the electric field. At later times when J is small and due to approximately equal numbers of particles with positive and negative velocities, irregularities and oscillations occurred whose precise value was dependent on the time step, emission particle weighting scheme, etc. In the plots presented here we show an average smooth dashed line through these unreliable values. The plots of current density vs. time at various X were sometimes constructed from $\partial E/\partial t$ when this method was more reliable.

SECTION 3 LINEARLY RISING PULSE, EXPONENTIAL SPECTRUM

In this section we present results for a linearly rising time history (p=1) and for the exponential energy spectrum, Equation (6).

In the following equations we give dimensional units for the dynamical variables. When numbers are given in the equations, we use these units for \overline{E} , Y, and R_1 :

Electron exponentiation energy \overline{E} (keV) Yield Y (elec/cal) X-ray rise rate R_1 (cal/cm²/sec²)

Equations (5) and (7) show the time unit to be

$$T_{p} = \left[\frac{\sqrt{m} \overline{E}}{6\sqrt{2\pi} e^{2} Y R_{1}}\right]^{1/3}$$

$$= 0.7035 \left[\frac{\sqrt{\overline{E}}}{Y R_{1}}\right]^{1/3} \text{ sec}$$
(10)

and the unit of length, Equation (4), is

$$\lambda = 7.796 \times 10^8 \left[\frac{\overline{E}^2}{Y R_1} \right]^{1/3}$$
 cm (11)

The units of electric field (E_1) and potential (Φ_1) are taken to be

$$E_{1} = \frac{m \overline{\nu}}{e T_{p}}$$

$$= 8.955 \times 10^{-5} \left[\overline{E} \ Y \ R_{1} \right]^{1/3} \quad \text{Volts/in} , \qquad (12)$$

$$\Phi_{1} = \lambda E_{1} = \frac{2\pi}{9} \frac{\overline{E}}{e}$$

= 698
$$\overline{E}$$
 Volts (13)

The units of number density (N_1) and current density (J_1) are

$$N_1 = \frac{Y R_1 T_p}{\overline{v}} = 6.349 \times 10^{-10} \left[\frac{Y^2 R_1^2}{\overline{E}} \right]^{1/3} cm^{-3}$$
, (14)

$$J_1 = e N_1 \overline{v} = 1.126 \times 10^{-15} \left[\sqrt{\overline{E}} Y^2 R_1^2 \right]^{1/3} Amps/m^2$$
. (15)

The units of dipole moment per unit area (P_1) and its time derivative: (\mathring{P}_1) are

$$P_{1} = e^{\lambda^{2}} N_{1} = \frac{\overline{E}}{18e}$$

$$= 6.181 \times 10^{-9} \overline{E} \quad \text{Coul/m} \quad , \tag{16}$$

$$\dot{P}_1 = \frac{P_1}{T_p} = 8.786 \times 10^{-9} \left[\overline{E}^{5/2} \text{ Y R}_1 \right]^{1/3} \quad \text{Amps/m} \quad .$$
 (17)

Finally, the second time derivative of the dipole moment per unit area has unit

$$\stackrel{\bullet}{P}_{1} = \frac{\stackrel{p}{p}}{T_{p}^{2}} = 1.249 \times 10^{-8} \left[\overline{E} \ Y \ R_{1} \right]^{2/3} \text{ Amps/m/sec}$$
(18)

For example, if \overline{E} = 5 keV, the material yield is Y = 5 × 10¹² elec/cal, and the flux is rising at a rate R_1 = 10¹³ cal/cm²/sec², then

$$T_p = 2.50 \text{ ns}$$
 $\lambda = 6.19 \text{ cm}$
 $E_1 = 5.64 \times 10^4 \text{ V/m}$
 $\Phi_1 = 3.49 \text{ kV}$
 $N_1 = 5.04 \times 10^7 \text{ cm}^{-3}$
 $J_1 = 2.00 \times 10^2 \text{ Amps/m}^2$
 $P_1 = 3.09 \times 10^{-8} \text{ Coul/m}$
 $\dot{P}_1 = 12.38 \text{ Amps/m}$
 $\dot{P}_1 = 4.96 \times 10^9 \text{ Amps/m/sec}$

Figures 2 through 9 show the electric field, potential, number density, and current density as a function of distance from the surface and time, scaled to λ and T_p ; and Figures 10 through 12 show the layer's dipole moment per unit area and its first two time derivatives. The units are those of Equations (10) through (18).

Figure 2. Electric field vs. x at various times.

Figure 3. Potential vs. x at various times.

Figure 4. Number density vs. x at various times.

Figure 5. Current density vs. x at various times

Figure 6. Electric field vs. time at various x.

Figure 7. Potential vs. time at various x.

Figure 8. Number density vs. time at various x.

Figure 9. Current density vs. time at various x.

Figure 10. Dipole moment per unit area vs. time.

Figure 11. Time derivative of dipole moment vs. time.

Figure 12. Second time derivative of dipole moment vs. time.

SECTION 4 LINEARLY RISING PULSE, LINEAR-TIMESEXPONENTIAL ENERGY SPECTRUM

This section presents results for a linearly rising time history (p=1) and for the linear-times-exponential energy spectrum, Equation (8). \overline{E} , Y, and R_1 are in the same units as in the previous section (keV, cal⁻¹, cal/cm²/sec²).

Equations (5) and (9) show the time unit to be

$$T_{p} = \left[\frac{1}{4\sqrt{2\pi}} \frac{\sqrt{m} \overline{E}}{Y R_{1}}\right]^{1/3}$$

$$= 0.8053 \left[\frac{\sqrt{\overline{E}}}{Y R_{1}}\right]^{1/3} \quad \text{sec} \quad . \tag{19}$$

and the unit of length is

$$\lambda = \overline{v} T_{p} = \left[\frac{\pi}{16 e^{2} m} \frac{\overline{E}^{2}}{Y R_{1}} \right]^{1/3}$$

$$= 1.339 \times 10^{9} \left[\frac{\overline{E}^{2}}{Y R_{1}} \right]^{1/3} cm \qquad (20)$$

The units of electric field (E_1) and potential (Φ_1) are

$$E_{1} = \frac{m}{e} \frac{\overline{V}}{T_{p}} = \left[2\pi^{2} \frac{m}{e} \overline{E} Y R_{1} \right]^{1/3}$$

$$= 1.173 \times 10^{-4} \left[\overline{E} Y R_{1} \right]^{1/3} \quad \text{Volts/m} , \qquad (21)$$

$$\Phi_1 = \lambda E_1 = \frac{\pi}{2} \frac{\overline{E}}{e}$$

$$= 1.571 \times 10^3 \overline{E} \quad \text{Volts} \quad . \tag{22}$$

The units of number density (N_1) and current density (J_1) are

$$N_{1} = \frac{Y R_{1} T_{p}}{\overline{V}}$$

$$= 4.845 \times 10^{-10} \left[\frac{Y^{2} R_{1}^{2}}{\overline{E}} \right]^{1/3} cm^{-3} , \qquad (23)$$

$$J_1 = 0 N_1 \overline{v}$$

= 1.290 ×
$$10^{-15} \left[\sqrt{\overline{E}} \text{ Y}^2 \text{ R}_1^2 \right]^{1/3} \text{ Amps/m}^2$$
 (24)

The units of dipole moment per unit area (P_1) and its time derivative (\mathring{P}_1) are

$$P_1 = e^{\lambda^2} N_1 = \frac{\overline{E}}{8e}$$

= 1.391 × 10⁻⁸ \overline{E} Coul/m , (25)

$$\dot{P}_1 = \frac{P_1}{T_p} = 1.727 \times 10^{-8} \left[\overline{E}^{5/2} \, \text{Y R}_1 \right]^{1/3} \, \text{Amps/m}$$
 (26)

The units of second time derivative of the dipole moment per unit area is

$$\dot{P}_{1} = \frac{\dot{p}_{1}}{T_{p}} = 2.144 \times 10^{-8} \left[\overline{E} \ Y \ R_{1} \right]^{2/3} \text{ Amps/m/sec} .$$
 (27)

Figures 13 through 23 show the dynamical solutions for the case of a linearly rising time history and a linear-times-exponential energy spectrum, using the units of Equations (19) through (27).

e tradition and the state of the second of the second

Figure 13. Electric field vs. x at various times.

Figure 14. Potential vs. x at various times.

Figure 15. Number density vs. x at various times.

Figure 16. Current density vs. x at various times.

Figure 17. Electric field vs. time at various x.

Figure 18. Potential vs. time at various x.

Figure 19. Number density vs. time at various x.

Figure 20. Current density vs. time at various x.

Figure 21. Dipole moment per unit area vs. time

Figure 22. Time derivative of dipole moment vs. time.

Figure 23. Second time derivative of dipole moment vs. time.

SECTION 5 CONSTANT PULSE, EXPONENTIAL SPECTRUM

In this section we present results for a constant X-ray pulse (p=0) and for the exponential energy spectrum, Equation (6).

We give here the dimensional units for the dynamical variables. When numbers are given we use these units for \overline{E} , Y, and R_{Ω} :

Electron exponentiation energy
$$\overline{E}$$
 (keV) Yield Y (elec/cal) X-ray flux R_o (cal/cm²/sec) .

Equations (5) and (7) show the time unit to be

$$T_{p} = \left[\frac{\sqrt{m E}}{6\sqrt{2\pi} e^{2} Y R_{o}}\right]^{1/2} ,$$

$$= 0.5901 \left[\frac{\sqrt{E}}{Y R_{o}}\right]^{1/2} sec , \qquad (28)$$

and the unit of length is

$$\lambda = \frac{1}{3} \left[\frac{1}{3} \sqrt{\frac{\pi}{2m}} \frac{\overline{E}^{3/2}}{e^2 Y R_o} \right]^{1/2}$$

$$= 6.539 \times 10^8 \left[\frac{\overline{E}^{3/2}}{Y R_o} \right]^{1/2} cm$$
(29)

The units of electric field (E_1) and potential (Φ_1) are

$$E_1 = \frac{m \ \overline{V}}{e \ T_p} = 1.068 \times 10^{-4} \left[\sqrt{\overline{E}} \ Y \ R_o \right]^{1/2} \ V/m ,$$
 (30)

$$\Phi_1 = \lambda E_1 = \frac{2\pi}{9} \overline{E} = 698 \overline{E} \quad \text{Volts} \quad . \tag{31}$$

The units of number density (N_1) and current density (J_1) are

$$N_1 = \frac{Y R_0}{\overline{V}} = 9.025 \times 10^{-10} \frac{Y R_0}{\sqrt{\overline{E}}} cm^{-3}$$
, (32)

$$J_1 = e N_1 \overline{v} = 1.602 \times 10^{-15} Y R_0 Amps/m^2$$
 (33)

The units of dipole moment per unit area $(P_{\hat{1}})$ and its time derivative $(\mathring{P}_{\hat{1}})$ are

$$P_1 = e \lambda^2 N_1 = \frac{\overline{E}}{18 e}$$

$$= 6.181 \times 10^{-9} \,\overline{E} \, \text{Coul/m}$$
 , (34)

$$\hat{P}_1 = \frac{P_1}{T_D} = 1.047 \times 10^{-8} \left[\overline{E}^{3/2} \, \text{Y R}_0 \right]^{1/2} \quad \text{Amps/m}$$
(35)

The second time derivative of the dipole moment per unit area $(\overset{\bullet}{P}_1)$ has unit

For example if \overline{E} = 5 keV, Y = 10^{13} elec/cal, and the flux is $R_0 = 10^5$ cal/cm²/sec, then

$$T_p = 0.88 \text{ ns}$$
 $\lambda = 2.19 \text{ em}$
 $E_1 = 1.60 \times 10^5 \text{ V/m}$
 $\Phi_1 = 3.49 \text{ kV}$
 $N_1 = 4.04 \times 10^8 \text{ cm}^{-3}$
 $J_1 = 1.60 \times 10^3 \text{ Amps/m}^2$
 $P_1 = 3.09 \times 10^{-8} \text{ Coul/m}$
 $\mathring{P}_1 = 35.01 \text{ Amps/m}$
 $\mathring{P}_1 = 3.97 \times 10^{10} \text{ Amps/m/sec}$.

Figures 24 through 34 give the dynamical solutions for the case of a constant X-ray pulse starting at t=0 and an exponential electron energy spectrum. The units are those of Equations (28) through (36).

14、10年前十八年的海域的海域的海域的海域的海域的海域域 经过的经济的国际的市场

Figure 24. Electric field vs. x at various times.

Figure 25. Potential vs. x at various times.

Figure 26. Number density vs. x at various times.

Figure 27. Current density vs. x at various times.

Figure 28. Electric field vs. time at various x.

Figure 29. Potential vs. time at various x.

Figure 30. Number density vs. time at various x.

Figure 31. Current density vs. time at various x.

Figure 32. Dipole moment per unit area vs. time.

Figure 33. Time derivative of dipole moment vs. time.

Figure 34. Second time derivative of dipole moment vs. time.

SECTION 6 CONSTANT PULSE, LINEAR-TIMES-EXPONENTIAL ENERGY SPECTRUM

Here we present results for the constant pulse (p=0) and linear-times-exponential energy spectrum, Equation (8). \overline{E} , Y, and R_o are in the same units as the previous section (keV, cal⁻¹, cal/cm²/sec).

Equations (5) and (9) show the time unit is

$$T_{p} = \left[\frac{m \overline{v}}{4\pi e^{2} Y R_{o}}\right]^{1/2}$$

$$= 0.7227 \left[\frac{\sqrt{\overline{E}}}{Y R_{o}}\right]^{1/2} \quad \text{sec} \quad , \quad (37)$$

and the unit of length is

$$\lambda = \overline{v} T_{p} = 1.201 \times 10^{9} \left[\frac{\overline{E}^{3/2}}{\overline{Y} R_{o}} \right]^{1/2}$$
 cm . (38)

The units of electric field (E_1) and potential (Φ_1) are

$$E_1 = \frac{m \ \overline{v}}{e \ T_p} = 1.308 \times 10^{-4} \left[\sqrt{\overline{E}} \ Y \ R_o \right]^{1/2} \ V/m$$
, (39)

$$\phi_1 = \lambda \ E_1 = \frac{\pi}{2} \, \frac{\overline{E}}{e}$$

=
$$1.571 \times 10^3 \; \overline{E} \; \text{Volts}$$
 . (40)

The units of number density (N_1) and current density (J_1) are

$$N_1 = \frac{Y R_0}{\overline{V}} = 6.016 \times 10^{-10} \frac{Y R_0}{\sqrt{\overline{E}}} cm^{-3}$$
, (41)

$$J_1 = e N_1 \overline{v} = 1.602 \times 10^{-15} Y R_0 Amps/m^2$$
 (42)

一、金属の高度は高速のできて、金融機会を開発している。 中間 音をなるできますのできるとのできません

The units of dipole moment per unit area (P $_1$) and its time derivative (\mathring{P}_1) are

$$P_1 = e^{\lambda^2} N_1 = \frac{\overline{E}}{8e}$$

= 1.391 × 10⁻⁸ \overline{E} Coul/m , (43)

$$\dot{P}_1 = \frac{P_1}{T_p} = 1.924 \times 10^{-8} \left[\overline{E}^{3/2} \text{ Y R}_0 \right]^{1/2} \text{ Amps/m}$$
 (44)

Finally, the unit of the second time derivative of the dipole moment per unit area is

$$\dot{P}_{1} = \frac{\dot{P}_{1}}{T_{p}} = 2.663 \times 10^{-8} \sqrt{E} \text{ Y R}_{o} \text{ Amps/m/sec}$$
 (45)

Figures 35 through 45 give the dynamical solutions for the case of a constant X-ray pulse starting at t=0 and a linear-times-exponential energy spectrum. The units are those of Equations (37) through (45).

Figure 35. Electric field vs. x at various times.

Figure 36. Potential vs. x at various times.

Figure 37. Number density vs. x at various times.

Figure 38. Current density vs. x at various times.

Figure 39. Electric field vs. time at various x.

Figure 40. Potential vs. time at various x.

Figure 41. Number density vs. time at various x.

Figure 42. Current density vs. time at various x.

Figure 43. Dipole moment per unit area vs. time.

是一种,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,

Figure 45. Second time derivative of dipole moment vs. time.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Director
Defense Advanced Rsch. Proj. Agency
ATTN: NMR

Director
Defense Communications Agency
ATTN: NMR

Defense Documentation Center Cameron Station 12 cy ATTN: TC

Director
Defense Intelligence Agency
ATTN: DB-4C

Director
Defense Nuclear Agency
ATTN: TISI, Archives
ATTN: DDST
2 cy ATTN: RAEV
3 cy ATTN: TITL, Tech. Library

Commander

Field Command
Defense Nuclear Agency
ATTN: FCLMC
ATTN: FCPR

Director
Interservice Nuclear Weapons School
ATTN: Document Control

Director
Joint Strat. Tgt. Planning Staff, JCS
ATTN: JLTW-2

Chief Livermore Division Fld. Command, DNA ATTN: FCPRL

National Communications System Office of the Manager ATTN: NCS-TS

Director National Security Agency ATTN: R-425

OJCS/J-3
ATTN: J-3 RDTA Br., WWMCCS Plans Div.

OJCS/J-5 ATTN: J-5 Plans & Policy Nuc. Div.

Under Secretary of Def. for Rsch. & Engrg. ATTN: S&SS (OS)

DEPARTMENT OF THE ARMY

Director BMD Advanced Tech. Ctr. ATTN: RDMH-0 DEPARTMENT OF THE ARMY (Continued)

Commander
BMD System Command
ATTN: BDMSC-TEN

Dep. Chief of Staff for Rsch. Dev. & Acq. ATTN: DAMA-CSM-N

Commander
Harry Diamond Laboratories
ATTN: DRXDO-TI, Tech. Library
ATTN: DRXDO-RCC, Raine Gilbert
ATTN: DRXDO-RCC, John A. Rosado
ATTN: DRXDO-NP

Commander
Picatinny Arzenal
ATTN: SMUPA
ATTN: SARPA

Commander
Redstone Scientific Information Ctr.
U.S. Army Missile Command
ATTN: Chief, Documents

Chief U.S. Army Communications Sys. Agency ATTN: SCCN-AD-SV, Library 是在这种是一个的是一个时间的是一个时间的是一个时间的是一个时间的,这个时间的一个时间的一个时间的一个时间,这个时间的一个时间,这个时间的一个时间的一个时间的一个

Commander U.S. Army Electronics Command ATTN: DRSEL

Commander
U.S. Army Foreign Science & Tech. Ctr.
ATTN: DRXST-ISI

DEPARTMENT OF THE NAVY

Chief of Naval Operations ATTN: Code 604C3

Chief of Naval Research
ATTN: Henry Mullaney, Code 427

Director
Naval Research Laboratory
ATTN: Code 7701
ATTN: Code 5410, John Davis

Officer-In-Charge Naval Surface Weapons Center ATTN: Code WA501, Navy Nuc. Prgms. Off.

Director Strategic Systems Project Office ATTN: NSP

DEPARTMENT OF THE AIR FORCE

AF Geophysics Laboratory, AFSC ATTN: Charles Pike

DEPARTMENT OF THE AIR FORCE (Continued)

AF Materials Laboratory, AFSC ATTN: Library

AF Weapons Laboratory, AFSC

ATTN: SUL ATTN: NTS 2 cy 2 CY ATTN: DYC

Headquarters, USAF/RD ATTN: RDOSM

Commander

Rome Air Development Center, AFSC ATTN: Edward A. Burke

SAMSO/DY

ATTN: DYS

SAMSO/MN

ATTN: MNNH ATTN: MNNG

SAMSO/SK

ATTN: SKF

SAMSO/XR

ATTN: XRS

Commander In Chief Strategic Air Command

ATTN: XPFS ATTN: NRI-STINFO, Library

DEPARTMENT OF ENERGY

University of California Lawrence Livermore Laboratory ATTN: Tech. Info. Dept., L-3

Los Alamos Scientific Laboratory ATTN: Doc. Control for Reports Library

Sandia Laboratories Livermore Laboratory
ATTN: Doc. Control for Theodore A. Dellin

Sandia Laboratories

ATTN: Doc. Control for 3141, Sandia Rpt. Coll.

OTHER GOVERNMENT AGENCY

NASA

Lewis Research Center

ATTN: N. J. Stevens ATTN: Library ATTN: Carolyn Purvis

DEPARTMENT OF DEFENSE CONTRACTORS

Aerospace Corporation

ATTN: Frank Hai ATTN: Julian Reinheimer ATTN: V. Josephson ATTN: Library

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

AVCO Research & Systems Group

ATTN: Research Lib., A830, Rm. 7201

The Boeing Company

ATTN: Preston Geren

University of California at San Diego ATTN: Sherman De Forest

Computer Sciences Corporation ATTN: Alvin T. Schiff

Dr. Eugene P. DePlomb ATTN: Eugene P. DePlomb

Dikewood Industries, Inc. ATTN: Tech. Library ATTN: K. Lee

EG&G, Inc.

Albuquerque Division

ATTN: Technical Library

Ford Aerospace & Communications Corp.
ATTN: Donald R. McMorrow, MS G30
ATTN: Library

General Electric Company

Space Division

Valley Forge Space Center ATTN: Joseph C. Peden, VFSC, Rm 4230M

General Electric Company

TEMPO-Center for Advanced Studies ATTN: William McNamara ATTN: DASIAC

Hughes Aircraft Company ATTN: Tech. Library

Hughes Aircraft Company, El Segundo 5ite ATTN: Edward C. Smith, MS A620 ATTN: William W. Scott, MS A1080

Institute for Defense Analyses ATTN: IDA, Librarian

IRT Corporation

ATTN: Dennis Swift ATTN: Technical Library

JAYCOR

ATTN: Library ATTN: Eric P. Wenaas

JAYCOR

ATTN: Robert Sullivan

Johns Hopkins University

Applied Physics Laboratory

ATTN: Peter E. Partridge

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Kaman Sciences Corporation ATTN: W. Foster Rich ATTN: Jerry I. Lubell ATTN: Library

Lockheed Missiles & Space Co., Inc. ATTN: Dept. 85-85

McDonnell Douglas Corporation ATTN: Stanley Schneider

Mission Research Corporation ATTN: Conrad L. Longmire
ATTN: Roger Stettner
ATTN: N. J. Carron
5 cy ATTN: Tech. Library

Mission Research Corporation-San Diego ATTN: Library ATTN: Victor A. J. Van Lint

Rockwell International Corporation ATTN: Technical Library

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

R & D Associates ATTN: Technical Library ATTN: Leonard Schlessinger

Science Applications, Incorporated ATTN: William L. Chadsey

Spire Corporation ATTN: Roger G. Little

SRI International ATTN: Library

Systems, Science and Software, Inc. ATTN: Technical Library ATTN: Andrew R. Wilson

TRW Defense & Space Sys. Group
ATTN: Tech. Info. Center/S-1930
2 cy ATTN: Robert M. Webb, R1-2410